23 Cambridge Computer Science Texts

A practical introduction
to denotational semantics

Lloyd Allison

Department of Computer Science, University of Western Australia

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 IRP

40 West 20th Street, New York, NY 10011-4211 USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1986

First published 1986
Reprinted 1995

British Library cataloguing in publication data
Allison, Lloyd
A practical introduction to denotational

semantics. — (Cambridge computer science
text)

1. Programming languages (Electronic
computers) — Syntax 2. Programming
languages (Electronic computers) —
Semantics

1. Title

005.13 QA76.7

Library of Congress cataloguing in publication data

Allison, Lloyd.
A practical introduction to denotational semantics.

(Cambridge computer science texts; 23)
Bibliography

Includes indexes.

I. Programming languages (Electronic computers) —
Semantics. I. Title. II. Series.

QA76.7.A45 1987 005.13 86-12961

ISBN 0521306892 hard covers
ISBN 0521314232 paperback

Transferred to digital printing 2003

MP

1.1
1.2

2.1
22
23
24
2.5

31
3.1.1
32
321
322
323
324
33
33.1
34
34.1
35
3.6

4.1
4.11
42
42.1

Contents

Preface
Acknowledgements
Glossary

Introduction
An example
Exercises

Basics

Abstract syntax
Sequential execution
Expressions

Control commands
Exercises

A-Notation

Domains

Functions

Untyped A-calculus
Conversion
Evaluation
Constants
High-order functions
Recursion

Fixed-point operator Y

Typed A-calculus
Type constructors

Polymorphic A-calculus

Exercises

Lattices
Cardinality
Halting problem
Lattice structure
Partial orders

vi

422
423
424
425

43
43.1
432
433

44

5.1
52
5.3
54

6.1
62
6.3
6.3.1
6.3.2
633
634
63.5
6.4
6.5
6.6

7.1
72
7.3
74
74.1
1.5
1.6
117
78
79

8.1
8.2
82.1

Contents

Lattice operations
Lattice of functions
Basic functions

Least fixed points
Recursive domains

Lists and sequences
Inverse-limit construction
Types as ideals

Exercises

A simple language

A complete definition
Examples

A Pascal translation
Exercises

Direct semantics
Side-effects

Errors and ‘wrong’
Declarations
Variables and storage
Left and right values
Procedures
Functions
Parameters

Output

A Pascal translation
Exercises

Control

Control commands

More continuations
Output and answers

Side-effects and sequencers

Examples

Declaration continuations
Functions and parameters

Standard semantics
An Algol-68 translation
Exercises

Data structures ang data types
Dynamic semantics of data structures

Static type checking
Named types

50
51

52
52
54
55
59

61
62
62

65
66
67
68
69
75

76
76
79
80
80
83
84
86
87
88
92

94
95
96
98

822
8§23
8.3
8.4

9.1
9.1.1
9.1.2
9.13

92
9.2.1
922
923
924
925

93

94

10
10.1
10.2

Contents

Recursive types
Parameterized types
Non-standard interpretations
Exercises

A Prolog semantics
Prolog

Execution
Example: append
Differentiator

A formal definition
Syntax

Semantic domains
Semantic equations
Unification
Auxiliary functions
An Algol-68 translation
Exercises

Miscellaneous
Interpreters and compiler-compilers
Concurrency

Appendix
Interpreter for Chapter 5

References
Index of definitions
Subject index

vii

99
99
100
100

102
102
104
105
106
107
107
107
108
110
11
111
115

117
117
118

120

127
130
131

1

Introduction

Denotational semantics is a formal method for defining the semantics of
programming languages. It is of interest to the language designer, compiler
writer and programmer. These individuals have different criteria for
judging such a method - it should be concise, unambiguous, open to
mathematical analysis, mechanically checkable, executable and readable
depending on your point of view. Denotational semantics cannot be all
things to all people but it is one attempt to satisfy these various aims. It is a
formal method because it is based on well-understood mathematical
foundations and uses a rigorously defined notation or meta-language.

The complete definition of a programming language is divided into
syntax, semantics and sometimes also pragmatics. Syntax defines the
structure of legal sentences in the language. Semantics gives the meaning of
these sentences. Pragmatics covers the use of an implementation of a
language and will not be mentioned further.

In the case of syntax, context-free grammars expressed in Backus—Naur
form (BNF) or in syntax diagrams have been of great benefit to computer
scientists since Backus and Naur [44] formally specified the syntax of
Algol-60. Now all programming languages have their syntax given in this
way. The result has been ‘cleaner’ syntax, improved parsing methods,
parser-generators and better language manuals. As yet no semantic
formalism has achieved such popularity and the semantics of a new
language is almost invariably given in natural language.

The typical problem facing a programmer is to write a program which
will transform data satisfying some properties or assertions ‘P’ into results
satisfying ‘Q’.

{P} program {Q}
The language of the assertions is predicate logic. This formulation treats a
program as a predicate transformer.

Concentrating on the predicates in the transformation leads to the
axiomatic style of semantics. This was suggested by Floyd [17] and

2 Introduction

formalized and developed by Hoare [24], Dijkstra [13] and many others.
The method is readable and very useful to programmers and designers of
algorithms. It is intimately connected with the discipline of structured
programming. It has, not insurmountable, difficulties in defining some
features of programming languages, notably gotes and side-effects in
expressions. There is heated debate, not to be taken up here, as to whether
this is a drawback of the method or an indication that these features are
hard to use and dangerous. Note that interest in predicate logic has created
the programming language Prolog [9] (Ch 9).

Concentrating on the program as a function mapping inputs satisfying P
into results satisfying Q leads to operational and denotational semantics.
Operational semantics imagines the program running on an abstract
machine. The machine may be quite unlike any real computer, either low-
level, simple and easy to analyse, or high-level with an easy translation
from the programming language. The machine and the translation must be
specified. Such a definition is most useful to a compiler writer if the abstract
machine is close to the real hardware. To be useful mathematically it may
require quite different properties.

Denotational semantics recognizes the subtle distinction between a
function as a probably infinite set of ordered pairs {{input;, output,>} and
an algorithm as a finite description of the function. A program is the
algorithm written in some particular programming language. A program
stands for, or denotes, a function. A denotational semantics of a
programming language gives the mapping from programs in the language
to the functions denoted.

Example

factorial ={<0, 1>,<1,1),¢2,2>,¢3,6),{4,24),.. .}
facttn) =if n=0 then I else n x fact(n — 1)

A good semantics should confirm that program fact denotes the factorial
function.

Denotational semantics is written in A-notation which is the A-calculus of
Church [7] with data-types. It has a well-developed mathematical theory
and the foundations have been thoroughly investigated. The method is
concise and powerful enough to describe the features of current
programming languages. Mosses [40] gives a definition of Algol-60 and
Tennent [63] gives one for Pascal, for example. Such definitions are only
readable with practice, the notation being equivalent to a powerful but

Introduction 3

terse programming language. It is more suitable for the language designer
and implementor than the programmer.

McCarthy [34] based the programming language Lisp on the A-calculus,
and other languages, particularly in the Algol family, show a similar
influence. Lisp was perhaps the first programming language designed on
mathematical semantic principles. Much of the motivation for the wider
application of denotational semantics to all programming languages came
from Strachey [59, 60]. Scott [54, 55, 56] solved many of the mathematical
problems raised concerning the existence and consistency of objects defined
in a semantics. One benefit of denotational semantics is that it can be
‘mechanized’. Mosses’ SIS [41] is an interpreter for denotational semantics
that enables a definition to be run - used to execute programs in the defined
language. Paulson’s compiler-compiler [49] translates a definition into a
compiler. Certain functional programming languages such as ML [20] are
very close to the typed A-notation and can be used to write, and run,
denotational definitions.

It seems that an axiomatic definition and a denotational definition make
good partners; the former for the programmer, the latter for the language
designer. The theme of Donahue’s book [14] is that such definitions can be
shown to be consistent with each other and he does this for a large subset of
Pascal.

Note that denotational semantics is part of a wide movement including
model theory in logic, philosophy and linguistics. For example, Montague
semantics [15] attempts to give a denotational style of semantics for a
subset of English. Logicians are concerned with the objects that names,
variables and predicates stand for and with what it means for a statement to
be true.

This introduction has omitted much, in particular extensions of
grammars to include semantics. Attribute grammars associate attribute
evaluation functions with grammar rules. These can be used operationally
to evaluate to code, or denotationally to evaluate to functions. Two-level
grammars {65] are also powerful enough to specify the input—output
behaviour of programs [§].

In the remainder of the book, after some motivating examples, there is an
introduction to the A-notation, data-types and the mathematical
foundations of denotational semantics. This is followed by applications to
the definition of programming-language features. The notation of even
denotational semantics is somewhat arbitrary (!) and throughout it is
shown how definitions can be programmed in conventional languages and
executed.

4 Introduction

1.1 An example

To give the flavour of denotational semantics, the classic example
of decimal numerals follows. Decimal numerals form a language, Num,
over the alphabet {0, 1,2,3,4,5,6,7,8,9}. It can be defined by the grammar

vi=v5|d
6::=0{1]2|3|4/5/6/7|8|9
The symbol‘::=" can be read as ‘is’ or ‘can be replaced by’. The |” can be

read as ‘or’. Adigit disaOora l ora 2 and so on. A numeral vis a numeral
followed by a digit or it is a single digit. The Greek letters § and v are
syntactic variables over parts of the language Num.

The decimal numerals are usually taken to stand for, or taken to denote,
integers which are abstract objects. This conventional interpretation can be
made formal by giving a valuation function V:

V: Num — Int
Vﬂvcﬂ] =10x V[Iv]] + V[é]]
V[O]]=0 V[[l]]: 1
V[2]=2 V[3]=3
V[4]=4 V[5]=5
vle]=6 V[7]=7
V[8]=8 V[9]=9
Visa function from the sentences in the language Num to the integers Int. V
is defined on a case-by-case analysis of the alternatives in the grammar for
Num. Elements of the language are enclosed in the special brackets [and |
to distinguish them from the meta-language outside. Inside the brackets are
strings. The integers outside the brackets are in italics. 7 is a character
which denotes the integer 7. It is impossible to write anything down
without using names and so we are forced to adopt some such convention.
The value of a particular numeral can now be calculated:
V[123]=10x V[12]+3
=10x(10x V[1]+2)+3
=123

This may prompt the reaction ‘so what, isn’t that obvious?’ The reply is
that we should be pleased that the formal definition agrees with intuition in
simple cases. This is a feature of good theories. The formalism is needed
when intuition is not strong enough. The reader who does not realize that
the statement 7= ‘7" is not only not true, but is an error in Pascal, may have
missed the point. Note that V has captured the essence of positional
notation, and that V[123]=V[0123] and so on.

Exercises 5

The definition of V can be used to design a piece of code that exists in
most compilers:

if ch in ['0".."9"] then
begin n :=ord(ch) —ord('0’);
ch:=nextch {return next char and advance input?};
while ch in ['0"..’97] do
begin n :=n*10+ ord(ch) —ord('0’);
ch :=nextch
end
end

Numerals that occur in a program must have their values calculated by the
compiler.

In what follows the languages examined will be more interesting and the
things they are mapped onto will be more complex. The general scheme,
however, is always to map a language onto a collection of abstract objects.

1.2

Exercises

. If the first case in the definition of V is changed to

V[vé]= —10x Y[v]+ V[5]
what are the new characteristics of V? What advantage does this new
interpretation of Num have?

. Give a grammar and a semantic valuation function for roman numerals

made up of I (one), V (five) and X (ten) only. It will be simpler to havea
grammar which allows unusual but comprehensible numerals such as

1§084¢ five
HIIIV zero
\'A% ten
although
IVX

should not be allowed as it is ambiguous — four or six.

To include the full range of roman numerals L (fifty), C (hundred), D
(five hundred), M (thousand), follows a similar pattern and just makes the
solution larger.

